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Abstract Earthly experiments fall short of recreating the incredibly high densities 

encountered in neutron stars and supernovae. These cosmic events offer an 

unparalleled opportunity to explore matter squeezed far beyond its usual limits within 

the nucleus. By piecing together the puzzle using findings from nuclear experiments, 

astrophysical observations, and powerful theoretical models, scientists can unveil the 

secrets of this strange, ultra-dense matter. While primarily made of neutrons, neutron 

stars might contain additional surprise guests – hyperons and quarks. These particles, 

existing outside the realm of typical atomic nuclei, influence the structure and 

composition of these stars. The core equations describing these objects, known as the 

equations of state, are the central theme of this article. We begin with a concise 

overview of their formation, exploring their defining characteristics and structural 

peculiarities. Particular emphasis is placed on the crucial role of degenerate neutrons 

in generating the immense pressure that holds these cosmic giants together. Building 

upon this foundation, we will delve into the derivation of the Tolman-Oppenheimer-

Volkoff (T-O-V) equations. These equations, derived from the principles of general 

relativity, serve as the cornerstone of our investigation. The T-O-V equations describe 

the structure of a spherically symmetric, static object composed of isotropic matter 

under the influence of its gravity. However, solving the T-O-V equations analytically 

is often intractable. Here, we will explore the application of the power series method 

as a numerical approach. This method involves expanding the solution as a series of 

terms with increasing powers of a chosen variable 

Keywords: Neutron Stars; Eos of Neutron star; Numerical solution of TOV 

equation; Power series method of solving TOV equation; 
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INTRODUCTION 

Supernovae give birth to neutron stars. Massive stars reach the end of their lives 

after roughly 10 million years (~107years). During this dramatic supernova explosion, 

the star’s core undergoes a violent collapse due to gravity. This immense pressure 

triggers the formation of a super-dense object at the center, as illustrated in Fig.(1). 

These compact remnants can take two forms: either a neutron star or a black hole[1] 

As the star’s core implodes, it initially forms a short-lived "proton-neutron star" 

with a density exceeding the normal density of atomic nuclei. However, a rapid core 

bounce occurs, leading to the birth of a true neutron star. 

As the name suggests, the interior of a neutron star is dominated by neutrons. At 

densities around the "nuclear density" ( 𝑛~𝑛0), the proportion of protons to total 

nucleons ( 𝑌𝑝) is only about 10% (𝑌𝑝 = 𝑛𝑝/𝑛 is 0.1). This means neutrons vastly 

outnumber protons. The remaining positive charge is balanced by the presence of 

negatively charged leptons within the star.[1] 

While the interior of a neutron star is incredibly hot, reaching temperatures around 

10 billion Kelvin (~108K), this is actually much lower than the energy carried by the 

individual neutrons (Fermi momenta,  𝑃𝐹~300 MeV). 

Neutron stars are incredibly compact objects, with masses ranging from 1 to 2 

times the mass of our Sun (1 solar mass = M⊙). Their small size, ~10 kilometers in 

radius, implies an extraordinarily high density. This density is estimated to be around 

~7 × 1014  g/cm3  grams per cubic centimeter, which is much larger than any material 

found on Earth.[3]. 

The impact of the shock wave’s success or failure, generated during the core 

bounce of a massive star, ultimately determines its fate. If the shockwave effectively 

pushes back the collapsing core, the star explodes in a supernova and leaves behind a 

neutron star as a remnant. However, if the shockwave fails, the core continues to 

collapse, leading to the formation of a black hole. 
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FIG.1:"Schematic diagrams of the evolution of supernova cores from massive 

stars to compact objects. Initially, the process commences with the gravitational 

collapse of the Fe core, causing compression of the central core while trapping 

neutrinos within due to interactions with hot, dense matter. Subsequently, the central 

core rebounds as a result of the impact of matter around the nuclear saturation density, 

generating a shock wave. At the core's center, a protoneutron star emerges, 

characterized by high temperatures and an abundance of neutrinos. The outcome 

diverges based on whether the shock wave successfully traverses the accreting outer 

layers of the Fe core: if successful, it triggers a supernova explosion, birthing a neutron 

star; if unsuccessful, the central object collapses into a black hole"[3] 

Pulsars, with their remarkably stable and precise signals that repeat every 

millisecond or so, provide a strong clue that these objects are incredibly compact. 

Imagine a large, fast-spinning object - its surface velocity (roughly the product of its 

spin rate and radius) would exceed the speed of light! This wouldn’t be possible. 

Luckily, pulsars are often found in binary systems with another star (neutron star, white 

dwarf, or even a black hole). Using these binary systems and Kepler’s Third Law, 

scientists can estimate a neutron star’s mass [4-6]. Even more precise measurements 

involve the slight delay pulsars experience due to general relativity as they travel past 

their companion’s gravity [7,8]. The heaviest known neutron star, PSR J0740+6620, 

weighs in at a whopping 2.08 solar masses with a small margin of error [9,10]. This 
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discovery helps us define the minimum stiffness possible for the matter within these 

stars. 

T-O-V EQUATION FOR NEUTRON STAR 

Understanding the fundamental properties of an ideal gas composed of 

electrons and nucleons enables us to model the conditions prevalent in 

astrophysical phenomena [1, 11, 12]. The neutron stars is a spherically symmetric 

body of isotropic material in static gravitational equilibrium. Pressure depends 

on the density of the matter within the star, as described by the equation of state 

𝑃(𝜌). This equation, known as the Tolman-Oppenheimer-Volkoff (TOV) equation, 

is like a more general version of Newton’s law of gravity, applicable in the 

extreme environment of a neutron star where Einstein’s theory of relativity plays 

a significant role. 

𝑑𝑃(𝑟)

𝑑𝑟
= −

𝐺𝑀(𝑟)𝜌(𝑟)

𝑟2
(1 +

𝑃(𝑟)

𝜌(𝑟)
) (1 +

4𝜋𝑟3𝑃

𝑀(𝑟)
) (1 +

2𝐺𝑀

𝑟
)
−1

 
(1) 

The T-O-V Eq.(1) is derived by solving the Einstein equations for a general time-

invariant, spherically symmetric metric. To find the mass, 𝑀(𝑟), enclosed within a 

sphere of radius r, we integrate the mass shell at that radius 

𝑑𝑀(𝑟)

𝑑𝑟
= 4𝜋𝑟2𝜌(𝑟) 

(2) 

We begin with a crucial piece of information: the central density 𝑛𝑐 at the heart 

of the star (represented by r=0 ). An equation of state (EoS) enters the scene, relating 

pressure P and density 𝜌 within the star. Using the central density 𝑛𝑐, the EoS 

calculates both pressure and density at various points throughout the star r . We imagine 

the star composed of thin layers, each called a mass shell. At each point r, a differential 

equation (2) is employed to determine the contribution of this mass shell to the total 

mass enclosed within that radius. This equation incorporates the density at that specific 

point 𝜌(𝑟) and a factor of 4𝜋𝑟2  .The integration process of (1) and (2) marches 
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outwards until the pressure reaches zero 𝑃(𝑟 = 𝑅) = 0. This point marks the edge of 

the neutron star, defining its radius R. The total mass of the star is then calculated as 

the mass enclosed within this radius  𝑀(𝑟 = 𝑅).. By repeating this procedure for 

various central densities 𝑛𝑐, we gather a collection of data points. These points 

establish a connection between the mass M and radius R of the neutron star, forming 

the M-R relationship. The specific M-R relationship obtained acts as a unique signature, 

reflecting the particular EoS used. Theoretically, by observing a neutron star’s mass 

and radius, we can potentially deduce the EoS governing its internal behavior. Using 

the energy-momentum tensor 𝑇𝑎𝑏 we can describe a perfect fluid. 

𝑇𝑎𝑏 = (𝜌𝑐2 + 𝑃)𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 
(3) 

then Einstein Tensor can be written as 

𝐺𝜇𝜈 =
8𝜋𝐺

𝑐4
𝑇𝜇𝜈 

(4) 

where 𝑔𝜇𝜈 are the covariant components of the metric tensor, 𝑢𝜇 is the four-

velocity (𝑢𝜇 =
𝑑𝑥𝜇

𝑑𝜏
 ), it satisfies the normalization 𝑢𝜇𝑢𝜈 = −1 . The star is static so, 

the three-velocity of the vector field vanishes, staying only the O component, by 

normalization we can get 𝑢0 =
1

√−𝑔00
= 1/𝑎(𝑟), where 𝑎(𝑟) is a measure of a red shift 

factor. 

𝑇𝑏
𝑎 = 𝑑𝑖𝑎𝑔{−𝜌𝑐2, 𝑃, 𝑃, 𝑃} (5) 

After solving Einstein’s field equations, we can get the asymptotic flatness 

condition to yield the three-space metric 

𝑒𝑥𝑝(−2𝜆) = 1 −
2𝐺𝑀(𝑟)

𝑐2𝑟
 

(6) 

and total mass inside radius   
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𝑀(𝑟) = 4𝜋 [∫𝜌(𝑟′)𝑟′2𝑑𝑟

𝑟

0

] (7) 

The pressure is a source of the gravitational field and the Schwarzschild metric 

acts as a modification in the denominator of the force law [13] 

𝛷′ =
1

1 − 2𝐺𝑀(𝑟)/𝑐2𝑟
(
𝐺𝑀(𝑟)

𝑐2𝑟2
+

4𝜋𝐺

𝑐4
𝑟𝑃) (8) 

Solving the Eq.(6) for 𝜆` and having the equation for Φ, can take derivative and 

by multiplying to r can find the Φ``. After obtaining relations for Φ`, 𝜆`, Φ``, Φ2 in 

terms of 𝜌, P, 𝑃`, exp2𝜆, we can express the relations in terms of the included mas 

𝑀(𝑟). This leads us to derive the equation governing the relativistic hydrostatic 

equilibrium (1). For EoS 𝑃 = 𝑃(𝜌), the T-O-V equations can be integrated from the 

origin with initial conditions 𝑀(0) = 0 and 𝜌𝑐 = 𝜌(0), until the pressure vanishes in 

some radius of the Star. 

By setting numerical values for pressure and density, we can find the (Eos), then 

by solving the T-O-V equation, we will obtain other variables. We need to solve a 

differential equation and find the equation in the form 𝑃 = 𝑃(𝜌). To solve it, we will 

use the power series method [13]. For easy and quick work, use the program 

"Mathematica" to represent the solution. 

NUMERICAL SOLUTION 

Our approach is to find a power-series solution to near  𝑟 = 0 

𝑑𝑃

𝑑𝑟
= −

(𝜌 + 𝑃)(𝑚 + 4𝜋𝑟3𝜌)

𝑟(𝑟 − 2𝑚)
 

(9) 

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 

(10) 
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𝑚(𝑟) =

∑ 𝑚𝑗𝑟
𝑗

𝑗 , 

𝑃(𝑟) =

∑ 𝑃𝑗𝑟
𝑗

𝑗 , 

𝜌(𝑟) =

∑ 𝜌𝑗𝑟
𝑗

𝑗 . 

(11) 

we get zero because 𝑟 = 0. For the EoS near the central density 𝜌𝑐  would be useful 

to use expansion 𝑃 = 𝑃(𝜌) 

𝑃 = 𝑃(𝜌𝑐) +
𝑃𝑐𝛤𝑐
𝜌𝑐

(𝜌 − 𝜌𝑐) + ⋯, (12) 

To model the impact of interactions and the transition from non-relativistic to 

relativistic behavior in dense matter, scientists often utilize a specific form called a 

polytrope.his polytrope takes the form of an equation 𝑃 = 𝐶𝜌Г, with Г is a crucial 

parameter called the adiabatic index. The key point is that the value of Г is not constant 

but rather changes at specific densities. These specific densities are referred to as 

fiducial densitiesх [14]. 

 𝑑 (𝑙𝑛𝑃)/𝑑 (𝑙𝑛𝜌) evaluated at 𝜌𝑐. The second term of the previous equation 

should be 𝑑𝑃/𝑑𝜌 evaluated at 𝜌𝑐 . But we can easily see that, Г𝑐 =
𝑑 (𝑙𝑛𝑃)

𝑑 (𝑙𝑛𝜌)
|𝜌𝑐

=
𝜌𝑐

𝑃𝑐

𝑑𝑃

𝑑𝜌 
 

=    To begin with, we can utilize the initial non-negligible terms in each power series 

and examine the results obtained through a first-order approximation. substituting the 

power series into Eq.(10) we get 

𝑑𝑚

𝑑𝑟
= 𝑚1 + 2𝑚2𝑟 + 3𝑚3𝑟

2 + 4𝑚4𝑟
3 + 5𝑚5𝑟

4 + 𝐻𝑂𝑇 = 4𝜋𝑟2

= (𝜌0𝑟
2 + 𝜌1𝑟

3 + 𝜌2𝑟
4 + 𝐻𝑂𝑇) 

(13) 

HOT means Higher Order Terms. By comparing the corresponding powers of r, 

we can deduce that 

𝑟0

𝑚1 = 0
 

𝑟1

𝑚2 = 0
 

𝑟2

3𝑚3 = 4𝜋𝜌0
 

𝑟3

4𝑚4 = 4𝜋𝜌1
 

𝑟4

5𝑚5 = 4𝜋𝜌2
 (14) 
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we get 𝑚1 and 𝑚2 equal to 0 as well as some expressions for 𝑚3, 𝑚4. Since the 

second line of the given ordinary differential equation lacks a constant term, there is 

no component to offset the 𝑚1 term in the first line, leading to the conclusion that 𝑚1 =

0. Likewise, since there is no linear term in r in the second line, the equation 2𝑚2𝑟 =

0 suggests that 𝑚2 = 0 and so on. Consequently, we will disregard 𝑚1 and 𝑚2. We 

write Eq.(9) as 

−(𝑟2 − 2𝑚𝑟)
𝑑𝑝

𝑑𝑟
= (𝜌 + 𝑝)(𝑚 + 4𝜋𝑟2𝑝) 

(15) 

and we’ll deal with the LHS and RHS separately [15]. First the LHS gives: 

−(𝑟2 − 2𝑚𝑟)
𝑑𝑝

𝑑𝑟

= −(𝑟2 − 2𝑚0𝑟 − 2𝑚3𝑟
4 + ⋯)(𝑝1 + 2𝑝2𝑟 + 3𝑝3𝑟

2

+ 4𝑝4𝑟
3 + ⋯) + 𝐻𝑂𝑇

= 2𝑚0𝑝1𝑟 − (𝑝1 − 4𝑚0𝑝2)𝑟
2 − (2𝑝2 − 6𝑚0𝑝3)𝑟

3

− (−2𝑚3𝑝1 + 3𝑝3 − 8𝑚0𝑝4)𝑟
4 + 𝐻𝑂𝑇 

(16) 

The RHS of Eq.(15) gives, 

(𝜌0 + 𝑝0 + (𝜌1 + 𝑝1)𝑟 + (𝜌2 + 𝑝2)𝑟
2 + ⋯)(𝑚0 + (𝑚3 + 4𝜋𝑝0)𝑟

3

+ (𝑚4 + 4𝜋𝑝1)𝑟
4) 

(𝜌0 + 𝑝0)𝑚0 + (𝜌1 + 𝑝1)𝑚0𝑟 + (𝜌2

+ 𝑝2)𝑚0𝑟
2[(𝜌0 + 𝑝0)(𝑚3 + 4𝜋𝑝0) + (𝜌3 + 𝑝3)𝑚0]𝑟

3

+ [(𝜌0 + 𝑝0)(𝑚4 + 4𝜋𝑝1) + (𝜌1 + 𝑝1)(𝑚3 + 4𝜋𝑝0)

+ (𝜌4 + 𝑝4)𝑚0]𝑟
4 + 𝐻𝑂𝑇 

(17) 

we can conclude from terms proportional to 𝑟0 that (𝜌0 + 𝑝0)𝑚0 = 0. Given that 

𝜌0 = 𝜌𝑐 and, 𝑝0 = 𝜌𝑐represent the central density and pressure values, respectively 

(which are non-zero quantities!) we can infer that 𝑚0 = 0. Moreover, by examining 

each power of r individually, we deduce: 
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𝑟1

(𝑝1 − 𝜌1) = 0
 

𝑟2

𝑝1 = 0
 

𝑟3

2𝑝2 = −(𝜌1 + 𝑝0)(𝑚3 + 4𝜋𝑝0)
 

𝑟4

3𝑝3 = −𝑚4(𝜌1 + 𝑝0)
 

(

18 

By combining the results of Eqs.(18) and (14) and using the EoS in Eq.(12) we 

find that the first two non-vanishing terms of all three series can be expressed in terms 

of the central density 𝜌𝑐 = 𝜌0. From the EoS we have  𝑝𝑐 = 𝑝(𝜌𝑐) = 0 From Eq.(14]) 

and   from Eq.(18) we have 

𝑝2 = −
1

2
(𝜌𝑐 + 𝑝𝑐)(𝑚3 + 4𝜋𝑝𝑐) 

(19) 

= −
2

3
𝜋(𝜌𝑐 + 𝑝𝑐)(𝜌𝑐 + 3𝑝𝑐) 

(20) 

Differentiated 𝜌 with respect to r twice to relate 𝑝2 and 𝜌2: 

2𝑝2 =
𝜕2𝜌

𝜕𝑟2
|𝑟=0 =

𝜕

𝜕𝑟
(
𝜕𝜌𝜕𝜌

𝜕𝑟𝜕𝑟
) |𝑟=0 

(21) 

because 𝑝1 = 0 we see that this equals with 

(
𝜕𝜌

𝜕𝑝
)(

𝜕2𝜌

𝜕𝑟2
) |𝑟=0 (22) 

and since 
𝜕𝜌

𝜕𝑝
= 𝑐𝑠

2 where 𝑐𝑠 is the speed of sound we get 
1

𝑐𝑠
22𝑝2

 and using Eq.(12) 

we have 

𝑝2 =
𝜌𝑐

𝛤𝑐𝑝𝑐
𝑝2 (23) 

Finally, to construct the power series for m we substitute these results Eqs. (19), 

and (23) into the power series for   to find 



 
 

 

Multidisciplinary  Scientific  Journal             May,  2024                         135 | P a g e  
 

International Journal of Science and Technology ISSN 3030-3443  Volume 1, Issue 19, May. 2024 

𝑚(𝑟) =
4

3
𝜋𝜌𝑐𝑟

3 +
4

5
𝜋𝜌𝑐𝑟

5 + 𝐻𝑂𝑇

=
4

3
𝜋𝜌𝑐𝑟

3 −
8

15
𝜋2

𝜌𝑐

𝛤𝑐𝑝𝑐
(𝜌𝑐 + 𝑝𝑐)(𝜌𝑐 + 3𝑝𝑐)𝑟

5 + 𝐻𝑂𝑇 

(24) 

𝑝(𝑟) = 𝑝𝑐 −
2

3
𝜋(𝜌𝑐 + 𝑝𝑐)(𝜌𝑐 + 3𝑝𝑐)𝑟

2 + 𝐻𝑂𝑇 

(25) 

𝜌(𝑟) = 𝜌𝑐 −
𝜌𝑐

𝛤𝑐𝑝𝑐
(𝜌𝑐 + 𝑝𝑐)

2

3
𝜋(𝜌𝑐 + 3𝑝𝑐)𝑟

2 + 𝐻𝑂𝑇 

(26) 

This solution will help us predict the Mass and of the Neutron Star. Equation 𝑝(𝑟) 

enables us to find different  𝑝𝑐, 𝜌𝑐, Г𝑐 as initial values, we equate it with 0 𝑝(𝑟) = 0 

due to finding the distance from the center of the star where pressure is equal to 0, 

which is Radius R of the Star. The next step is to use an equation 𝑚(𝑟)  to compute the 

Mass. Below are presented typical values for the radius and mass, derived from the 

previous parameters within the specified range: 

1.  
𝑝𝑐

𝜌𝑐
 in the range 0.4 <

𝑝𝑐

𝜌𝑐
< 0.6  

1.  𝑝𝑐 in the range 0.001 < 𝑝𝑐 < 0.004 

2.  Г𝑐 in the range 2 < Г𝑐 < 4 

and we expect to find solutions for the radius and mass: radius 10-15 km, mass 

1,5-2,5 solar masses. The possibility of encountering small errors in the previous values 

is entirely reasonable and falls within the margin of error. By testing values such as: 

𝜌𝑐 = 0.000364 , 𝑝𝑐 = 0.000214 , Г𝑐 = 2.05 in the expressions for pressure and mass 

𝑝(𝑟), 𝑚(𝑟), we determine that the radius and mass are as follows: R=13.256  km and 

M=2.51216 solar masses. 

We can see from Fig.(2) 𝑃(𝑟) − 𝑟 graphics that the pressure drops to 0 when we 

hit the surface at the radius 𝑟 = 𝑅 . Even after using typical values from derivation 

graphics, Fig. (3) – (4) gives the same view. The collated graphical data offers 

compelling evidence of an inverse relationship between density and radius. A decrease 
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in density results in a proportional increase in radius. Our results in a fine 

approximation of our experimental values and graphs. 

 
 

FIG. 2: The P-r graph 

 
 

FIG. 3:  The M-r graph 

  

FIG. 4: The ρ − r graph 

Conclusion. We have examined and successfully solved the T-O-V equations 

using the power series method, a reliable approach. It is important to note that we can 

extract observable data using this solution. The consistency between our derived values 

and experimental data is excellent, leading us to confidently assert that we have 
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discovered an alternative means to reproduce the attributes of the Neutron Star and its 

Equation of State.  

Determining the radius and mass of the star was achieved by setting the pressure 

equation to zero, 𝑝(𝑟) = 0. At this point, 𝑟 = 𝑅 , yielding the star the radius. 

Subsequently, inserting this value into the mass equation 𝑚(𝑟), we obtain the total 

mass 𝑀(𝑅) in a straightforward and efficient way. It is essential to emphasize the 

significance of deriving the appropriate expressions for density 𝜌, basing them on 

observations of these celestial structures. These expressions serve as initial conditions 

and vary from one Neutron Star to another. It is worth noting that setting pressure to 

zero results in a different radius value compared to setting density to zero. Although 

this discrepancy can be rectified, we opt to utilize 𝑚(𝑟) due to its convenience and 

ease of interpretation. 
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