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ANNOTATION: In this article, we will study many properties and characteristics 

of curves.In addition, we will reveal their important aspects through the tangent 

vector,the normal vector and the binormal vector.At the end of the article, we will 

provide the proof of an important theorem related to the theory of curves.Moreover, 

the essence of the article is revealed by citing specific examples. 
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INTRODUCTION 

We will start with learning the following important aspects. 

Parametrized Curves: Assume that  𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are the coordinate at time 

𝑡 of an “object” moving in space during its action. 

 The  that object’s situation  at any particular time 𝑡 is the vector  𝛼(𝑡) =

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)).  

Let 𝐼 ⊂  𝑅 denote the interval of time during that we will learn the object’s 

action,so that  𝛼 ∶  𝐼 →  𝑅3 . 

 It is reasonable to suppose that 𝛾 is smooth, that means that every of the three 

component functions, 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), separately is smooth in the sense that it can 

be differentiated any part of times.  

To sum up, “a moving object” in space will be shaped through the  𝑛 =  3  

situation of a parametrized curve:  

But, in this article,we will use from curve parameterized by arc length. 

We want to be able to associate to a curve a function that measures how much the 

curve bends at each point. 



 
 

 

Multidisciplinary  Scientific  Journal             April,  2024                         19 | P a g e  
 

International Journal of Science and Technology ISSN 3030-3443  Volume 1, Issue 14, April. 2024 

 Let  𝛼: (𝑎, 𝑏) → 𝑅2  be a curve parameterized by arc length. Now, in the 

Euclidean plane any three non-collinear points lie on a unique circle, centered at the 

orthocenter of the triangle defined by the three points. 

 For 𝑠 ∈  (𝑎, 𝑏) choose 𝑠1, 𝑠2, and 𝑠3 near 𝑠 so that 𝛼(𝑠1), 𝛼(𝑠2), and 𝛼(𝑠3) are 

noncollinear. This is possible as long as 𝛼 is not linear near 𝛼(𝑠).  

Let 𝐶 =  𝐶(𝑠1, 𝑠2, 𝑠3) be the center of the circle through 𝛼(𝑠1), 𝛼(𝑠2),  and (𝑠3) . 

The radius of this circle is approximately  |𝛼(𝑠)  −  𝐶|. A better function to consider is 

the square of the radius:  

    𝜌(𝑠)  =  (𝛼(𝑠)  −  𝐶)  ·  (𝛼(𝑠)  −  𝐶). 

 Since 𝛼 is smooth, so is 𝜌. Now, 𝛼(𝑠1), 𝛼(𝑠2), and 𝛼(𝑠3)  lie on the circle so 

𝜌( 𝑠1)  =  𝜌(𝑠2)  =  𝜌(𝑠3). By Rolle’s Theorem there are points 𝑡1  ∈  (𝑠1, 𝑠2) and 

𝑡2  ∈  (𝑠2, 𝑠3) so that 𝜌′( 𝑡1)  =  𝜌 ′( 𝑡2)  =  0.  

Then, using Rolle’s Theorem again on these points, there is a point 𝑢 ∈  ( 𝑡1, 𝑡2) 

so that  𝜌 ′′( 𝑢)  =  0. Using Leibnitz’ Rule we have 𝜌′( 𝑠)   =  2𝛼′( 𝑠) · (𝛼(𝑠)  −  𝐶) 

and  

𝜌′′( 𝑠)  =  2[𝛼′′( 𝑠)  ·  (𝛼(𝑠)  −  𝐶)  + 𝛼′( 𝑠)  ·  𝛼′( 𝑠)].  

Since 𝜌 ′′( 𝑢) = 0 we get  

𝛼′′( 𝑢)  ·  (𝛼(𝑢)  −  𝐶)  =  −𝛼′( 𝑠) ·  𝛼(𝑠)  =  −1.  

Now, as 𝑠1, 𝑠2, and 𝑠3 get closer to 𝑠, then the center of the circles will converge 

to a value. Then 𝑡1 and 𝑡2  go to 𝑠, so  𝜌 ′( 𝑠) = 0  which forces 𝛼′( 𝑠) ·

 (𝛼(𝑠) − 𝐶𝛼(𝑠)) = 0. Furthermore,  

𝛼′′( 𝑠) ·  (𝛼(𝑠) − 𝐶𝛼(𝑠)) = −1. 

This says that the circle centered at 𝐶𝛼(𝑠) with radius 𝛼(𝑠) − 𝐶𝛼(𝑠) shares the 

point 𝛼(𝑠) with the curve 𝛼. Furthermore, from the above the tangent to the circle at 

𝛼(𝑠) is a multiple of 𝛼′( 𝑠). Thus, this circle, called the osculating circle, is tangent to 

the curve at 𝛼(𝑠). The point 𝐶𝛼(𝑠) is called the center of curvature of 𝛼 at 𝑠, and the 

curve given by the function 𝐶𝛼(𝑠) is called the curve of centers of curvature.  

Definition 1:  

The plane curvature of 𝛼 at 𝑠 is the reciprocal of the radius of the osculating circle:  
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  𝜅±(𝑠)  =  
1 

|𝛼(𝑠)−𝐶𝛼(𝑠)|
.    

Theorem1:    𝜅±(𝑠) =  |𝛼′′( 𝑠)|. 

 Proof: Since 𝛼′( 𝑠) ·  𝛼′( 𝑠) =  1, differentiating gives  𝛼′′( 𝑠) ·  𝛼′( 𝑠) =  0. 

This means that 𝛼′′( 𝑠) is perpendicular to 𝛼′( 𝑠). Since we have seen that 𝛼(𝑠) −

𝐶𝛼(𝑠) is also perpendicular to 𝛼′( 𝑠), there exists a 𝑘 ∈  𝑅 so that 

 𝛼(𝑠) − 𝐶𝛼(𝑠) =  𝑘𝛼′′( 𝑠).  

From above we have 

 −1 =  𝛼′′( 𝑠)( 𝛼(𝑠) − 𝐶𝛼(𝑠))  = 𝛼′′( 𝑠) ·  𝑘𝛼′′( 𝑠)  =  𝑘|𝛼′′( 𝑠)| 2 .  

Thus,     |𝛼(𝑠) − 𝐶𝛼(𝑠)|  =  |𝑘| |𝛼′′( 𝑠)|  =  
1 

|𝛼′′( 𝑠)| 2
 |𝛼′′( 𝑠)|  =

1 

|𝛼′′( 𝑠)|
.  

We rarely can symbolically represent a curve as parameterized by arc length. 

Quite often, a different parameterization is more reasonable. To find the curvature, 

though, would require that we parameterize by arclength and then differentiate. There 

is an easier way. 

 Theorem2: 

 The plane curvature of a regular plane curve 𝜎(𝑡)  =  (𝑥(𝑡), 𝑦(𝑡)) is given by 

    𝜅±(𝑡) = |
𝑥′′𝑦′−𝑥′𝑦′′

((𝑥′)2+(𝑦′)2)
3
2

| . 

  About Tractrix line. 

 Describe the curve followed by a weight being dragged on the end of a fixed 

straight length and the other end moves along a fixed straight line. The tractrix is the 

curve characterized by the condition that the length of the segment of the tangent line 

to the curve from the curve to the y-axis is constant. It has the following equation for a 

given constant 𝑎: 

 𝑥 =  𝑎𝑙𝑛 (
𝑎 + √𝑎2 − 𝑦2

𝑦
 ) − √𝑎2 − 𝑦2 . 

 Let the curve begin at (𝑎, 0) on the 𝑥 − 𝑎𝑥𝑖𝑠. Now, we can see that  

𝑦′ 

𝑥′
=

 𝑑𝑦 

𝑑𝑥
=  

√𝑎2−𝑥2

𝑥
                         (1.1) 

Square both sides of the equation and simplify  



 
 

 

Multidisciplinary  Scientific  Journal             April,  2024                         21 | P a g e  
 

International Journal of Science and Technology ISSN 3030-3443  Volume 1, Issue 14, April. 2024 

(𝑥′)2 + (𝑦′)2 = (
𝑎

𝑥
)2(𝑥′)2.  

 Now, if we differentiate the first equation (1.1), we get 

𝑥′𝑦′′ − 𝑥′′𝑦′

(𝑥′)2
=

−𝑎2𝑥′

𝑥2√𝑧2 − 𝑥2
 

𝑥′𝑦′′ − 𝑥′′𝑦′ =
−𝑎2(𝑥′)3

𝑥2√𝑎2 − 𝑥2
 

 Thus, 

 𝜅±(𝑥, 𝑦) = |
−𝑎2𝑥′

𝑥2√𝑧2−𝑥2
 

𝑥3

𝑎3(𝑥′)3
| = |

𝑥

𝑎√𝑎2−𝑥2
|   

Of course, we can integrate Equation 1.1 to get  

𝑦(𝑥)  = ∫
𝑥

𝑎√𝑎2 − 𝑥2
 𝑑𝑥 

 A change of variables of the form 𝑥 =  𝑎 𝑠𝑖𝑛(𝑡) gives: 

 𝜎(𝑡)  =  (𝑎 𝑠𝑖𝑛(𝑡), 𝑎 𝑙𝑛(𝑡𝑎𝑛(
𝑡

2
)  +  𝑎 𝑐𝑜𝑠(𝑡)),  

which gives the plane curvature as  𝜅±(𝑡) = |
tan (𝑡)

𝑎
|.  

 

Also, to parameterize the tractrix by arclength, we need  (𝑥′)2 + (𝑦′)2 = 1, 

 Thus,   (
𝑎

𝑥
)2(𝑥′)2 = 1,  which gives  𝑥 ′ =  ± 

 𝑥

𝑎
. 

 Let’s take 𝑎 =  1 and consider just the case  𝑥 ′ = 𝑥. Then,  𝑥(𝑠)  =  𝑒𝑠  from 

which it follows that  

𝑑𝑦

𝑑𝑠
=

√1 − 𝑥2

𝑥

𝑑𝑥

𝑑𝑠
 = √1 − (𝑒𝑠)2  

𝑦(𝑥)  = √1 − ( 𝑒𝑠)2 −  𝑎𝑟𝑐𝑐𝑜𝑠ℎ(𝑒−𝑠 ). 

 

 This requires that 0 ≤   𝑒2𝑠 ≤  1. Take the curve traced out in the opposite 

direction by replacing 𝑠 by −𝑠. The parameterization is now: 

 𝜎(𝑠)  =  ( 𝑒−𝑠 , √1 − ( 𝑒−𝑠)2 −  𝑎𝑟𝑐𝑐𝑜𝑠ℎ(𝑒−𝑠 )), 𝑠 ≥  0. 

 For 𝑎 =  1 we have the plane curvature:  
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𝜅±(𝑠)  =  |𝜎 ′′(𝑠)|  =
 𝑒−𝑠

√1 − ( 𝑒−𝑠)2
. 

 Let 𝛼: (𝑎, 𝑏)  →  𝑅2  be a curve. The reverse curve is  ˆ𝛼: (𝑎, 𝑏)  →  𝑅2  is given 

by 𝛼ˆ(𝑡)  =  𝛼(𝑏 −  𝑡). We wish to distinguish between these two curves. 

 Definition2 

 Let 𝑒1, 𝑒2  denote the standard basis vectors in 𝑅2. An ordered pair of vectors 

[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝑅2 is said to be in standard orientation if the matrix representing the 

transformation from [𝑢, 𝑣] to [𝑒1, 𝑒2] has a positive determinant. 

 If 𝛼(𝑠) is a regular curve parameterized by arclength, then the unit tangent vector 

is  

     𝑇(𝑠) = 𝛼′(𝑠).  

Let 𝑁(𝑠) denote the unique unit vector perpendicular to 𝑇(𝑠) with standard 

orientation [𝑇(𝑠), 𝑁(𝑠)]. 𝑁(𝑠) is the unit normal vector to 𝛼 at 𝑠. Since 𝑇(𝑠) is a unit 

vector, we see that 𝑇(𝑠)  ·  𝑇′(𝑠)  =  0. Thus,𝛼′′(𝑠)  =   𝑇′(𝑠)  must be a multiple of 

𝑁(𝑠). 

 Definition3  

The directed curvature 𝜅(𝑠) of a unit-speed curve 𝛼 is given by the identity  

𝛼′′(𝑠)  =  𝜅(𝑠)𝑁(𝑠). 

 Note that since 𝑁(𝑠) is a unit vector, we see that   |𝜅(𝑠)| =  |𝛼(𝑠)| =  𝜅±(𝑠). 

 Theorem3: (Fundamental Theorem for Plane Curves)  

Given any continuous function 𝜅: (𝑎, 𝑏)  →  𝑅, there is a curve 𝜎 ∶  (𝑎, 𝑏)  →  𝑅2 , 

which is parameterized by arclength, such that 𝜅(𝑠) is the directed curvature of 𝜎 at 𝑠 

for all 𝑠 ∈  (𝑎, 𝑏). Furthermore, any other curve 𝜎¯ ∶  (𝑎, 𝑏)  → 𝑅2 satisfying these 

conditions differs from 𝜎 by a rotation followed by a translation.  

The proof of this is a very neat, simple proof which uses differential equations. 

 Proof: From the theorem, we have a function 𝑓 ∶  (𝑎, 𝑏)  →  𝑅2 written as 𝑓(𝑠)  =

 (𝑓1(𝑠),  𝑓2(𝑠)) satisfying the following system of differential equations: 

 (𝑓 1
′ (𝑠), 𝑓 2

′ (𝑠)) = 𝜅(𝑠)(−𝑓2(𝑠),  𝑓1(𝑠)),  
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Note that if f is a solution to this differential equation, then it is a unit-speed curve 

because 

 
𝑑

𝑑𝑠
(𝑓 1

2(𝑠) + 𝑓 2
2(𝑠))  =  2𝑓1(𝑠)𝑓 1

′ (𝑠 +  2𝑓2(𝑠)𝑓 2
′ (𝑠) =

 2𝜅(𝑠)( 𝑓1(𝑠),  𝑓2(𝑠)) · (− 𝑓2(𝑠),  𝑓1(𝑠))  =  0  

Thus, |𝑓(𝑠)| is a constant and since |𝑓(𝑐)|  =  1, |𝑓(𝑠)|  =  1 for all 𝑠 ∈  (𝑎, 𝑏).  

Lemma1: 

 If 𝑔(𝑡) is a continuous (𝑛 ×  𝑛) −matrix-valued function on an interval, then 

there exist solutions,  

𝐹 ∶  (𝑎, 𝑏) →  𝑅𝑛 , to the differential equation   𝐹′(𝑡) =  𝑔(𝑡)𝐹(𝑡). 

 Applying this lemma, we have a function 𝑔(𝑠) given by 

 𝑔(𝑠)  = (
0 −𝜅(𝑠)

𝜅(𝑠) 0
)   

 The equation 𝑇 ′(𝑠) =  𝜅(𝑠)𝑁(𝑠) becomes 𝑇 ′(𝑠) =  𝑔(𝑠)𝑇(𝑠). 

 Thus, the above lemma gives us the function 𝑇(𝑠) for the curve 𝜎(𝑠) with the 

correct curvature. To find the curve 𝜎(𝑠) we only need to integrate 𝑇(𝑠). We can 

choose 𝜎(𝑐) to be any point in 𝑅2 and we can choose 𝑢 to be any unit vector in  𝑅2  . 

Changing 𝑢 at 𝜎(𝑐) involves a rotation. That rotation passes through the differential 

equation so that another solution would appear as   𝑇𝑢(𝑠)  =  𝜌𝜃𝑇(𝑠), where 𝜌𝜃 is a 

rotation matrix. A translation resets the point 𝜎(𝑐) to be any point in 𝑅2. Thus, a second 

solution 𝜎𝑢(𝑠)  must satisfy   𝜎(𝑠)  =  𝜌𝜃𝜎(𝑠)  + 𝜔0.  

This proves the theorem. 
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