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ANNOTATION: Inthis article, we will study many properties and characteristics
of curves.In addition, we will reveal their important aspects through the tangent
vector,the normal vector and the binormal vector.At the end of the article, we will
provide the proof of an important theorem related to the theory of curves.Moreover,
the essence of the article is revealed by citing specific examples.
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INTRODUCTION

We will start with learning the following important aspects.

Parametrized Curves: Assume that x(t),y(t), and z(t) are the coordinate at time
t of an “object” moving in space during its action.

The that object’s situation at any particular time t is the vector «a(t) =
(x(£), y (1), z(t)).

Let I € R denote the interval of time during that we will learn the object’s
action,sothat a: I — R3.

It is reasonable to suppose that y is smooth, that means that every of the three
component functions, x(t), y(t), and z(t), separately is smooth in the sense that it can
be differentiated any part of times.

To sum up, “a moving object” in space will be shaped through the n = 3
situation of a parametrized curve:

But, in this article,we will use from curve parameterized by arc length.

We want to be able to associate to a curve a function that measures how much the

curve bends at each point.
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Let a:(a,b) > R? be a curve parameterized by arc length. Now, in the
Euclidean plane any three non-collinear points lie on a unique circle, centered at the
orthocenter of the triangle defined by the three points.

For s € (a,b) choose sq,s,, and s; near s so that a(s,), a(s,), and a(s3) are
noncollinear. This is possible as long as a is not linear near a(s).

Let C = C(sq,S,,53) be the center of the circle through a(s;), a(s,), and (s3) .
The radius of this circle is approximately |a(s) — C|. A better function to consider is
the square of the radius:

p(s) = (a(s) — ©) - (a(s) — O).

Since «a is smooth, so is p. Now, a(s;), a(s,), and a(s3) lie on the circle so
p(s1) = p(sy) = p(s3). By Rolle’s Theorem there are points t; € (sq,s,) and
t, € (s3,83)sothatp’(ty) = p'(ty) = 0.

Then, using Rolle’s Theorem again on these points, there is a point u € (t1,t,)
sothat p ""(u) = 0. Using Leibnitz’ Rule we have p'(s) = 2a'(s) - (a(s) — C)
and

p"(s) = 2[a"(s) - (a(s) = C) + a'(s) - a’(s)].

Since p "(u) = 0 we get

a’(u) - (a(u) — C) = —a'(s): a(s) = —1.

Now, as s,, S5, and s get closer to s, then the center of the circles will converge
to a value. Then t; and t, go to s, so p'(s)=0 which forces a'(s) -
(a(s) — C,(s)) = 0. Furthermore,

a'’(s) - (a(s) — Ca(s)) = —1.

This says that the circle centered at C,(s) with radius a(s) — C,(s) shares the
point a(s) with the curve a. Furthermore, from the above the tangent to the circle at
a(s) isamultiple of a’( s). Thus, this circle, called the osculating circle, is tangent to
the curve at a(s). The point C,(s) is called the center of curvature of « at s, and the
curve given by the function C,(s) is called the curve of centers of curvature.

Definition 1:

The plane curvature of « at s is the reciprocal of the radius of the osculating circle:
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__r
la(s)=Ca(S)I

Theoreml: ky(s) = |a”(s)].

K+(s) =

Proof: Since a’(s) - a'(s) = 1, differentiating gives a”(s)- a’'(s) = 0.
This means that a''( s) is perpendicular to a’( s). Since we have seen that a(s) —
C,(s) is also perpendicular to a’( s), there existsa k € R so that

a(s) — C,(s) = ka'(s).

From above we have

—1 = a"(s)(a(s) = Ca(s)) =a”(s)- ka"(s) = kla"(s)|?.

Thus, a(s) = Co()| = [kl la" ()| = —= l&" ()] = —

la"" ($)]? la’ ()l

We rarely can symbolically represent a curve as parameterized by arc length.
Quite often, a different parameterization is more reasonable. To find the curvature,
though, would require that we parameterize by arclength and then differentiate. There
IS an easier way.

Theorem2:
The plane curvature of a regular plane curve a(t) = (x(t),y(t)) is given by
xllyl_xlyll
YY)

((x"H2+(")*)2

About Tractrix line.

Ky (t) =

Describe the curve followed by a weight being dragged on the end of a fixed
straight length and the other end moves along a fixed straight line. The tractrix is the
curve characterized by the condition that the length of the segment of the tangent line
to the curve from the curve to the y-axis is constant. It has the following equation for a
given constant a:

a +./a*—y?
x=aln( 24 )—\/az—yz.

y

Let the curve begin at (a, 0) on the x — axis. Now, we can see that

Y o dy _ Jarox? (1.1)

x! dx x

Square both sides of the equation and simplify
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() + () = ()

Now, if we differentiate the first equation (1.1), we get

xryrl _xllyl _ale
CO
_2(.\3
r.,r .. __ a (x)
Xyl =x"y = —/——
xZ a2 — xZ
Thus,
_ _ale x3 _ X
ks (,y) = x2VzZ—xZ a3(x")3l T lavaZ=x?

Of course, we can integrate Equation 1.1 to get

X
X) = —— dx
Y@ = | ——
A change of variables of the form x = a sin(t) gives:
o(t) = (asin(t),aln(tan(s) + acos(t)),

tan(t)
a

which gives the plane curvature as x4 (t) =

Also, to parameterize the tractrix by arclength, we need (x')? + (y')? =1,
Thus, (5)*(x")? = 1, whichgives x' = + =.

Let’s take a = 1 and consider just the case x' = x. Then, x(s) = e*® from

which it follows that

dy +V1—x?dx
S — /1_ (eS)Z
ds X ds

y(x) =+/1—(e5)?% — arccosh(e™).

This requires that 0 < e?s < 1. Take the curve traced out in the opposite

direction by replacing s by —s. The parameterization is now:

o(s) = (e 5,1 —(e5)?— arccosh(e™)), s =2 0.

Fora = 1 we have the plane curvature:
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)

Let a: (a,b) —» R? beacurve. The reverse curve is “a: (a,b) — R? is given

Ki(s) = [0 ()] =

by a”(t) = a(b — t). We wish to distinguish between these two curves.

Definition2

Let e;,e, denote the standard basis vectors in R2. An ordered pair of vectors
[u,v],u,v € R? is said to be in standard orientation if the matrix representing the
transformation from [u, v] to [e;, e,] has a positive determinant.

If a(s) is aregular curve parameterized by arclength, then the unit tangent vector

T(s) = a'(s).

Let N(s) denote the unique unit vector perpendicular to T(s) with standard
orientation [T(s), N(s)]. N(s) is the unit normal vector to « at s. Since T'(s) is a unit
vector, we see that T(s) - T'(s) = 0. Thus,a”(s) = T'(s) must be a multiple of
N(s).

Definition3

The directed curvature x(s) of a unit-speed curve « is given by the identity

a'(s) = k(s)N(s).

Note that since N(s) is a unit vector, we see that |k(s)| = [a(s)| = x4 (s).

Theorem3: (Fundamental Theorem for Plane Curves)

Given any continuous function k: (a,b) — R,thereisacurves : (a,b) — R?,
which is parameterized by arclength, such that x(s) is the directed curvature of o at s
for all s € (a,b). Furthermore, any other curve o™ : (a,b) — R? satisfying these
conditions differs from ¢ by a rotation followed by a translation.

The proof of this is a very neat, simple proof which uses differential equations.

Proof: From the theorem, we have a function f : (a,b) — R?writtenas f(s) =

(f1(s), f2(s)) satisfying the following system of differential equations:
(f 105). f 2(8)) = k($)(=f2(s), fu(5)),
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Note that if f is a solution to this differential equation, then it is a unit-speed curve
because

LU+ FAUS)) = 2H()f i(s + 2f()f 4(5) =
2k(S)(f1(5), f2(5)) - (= f2(5), f1(s)) = 0

Thus, |f(s)] is a constant and since |f(c)| = 1,|f(s)| = 1foralls € (a,b).

Lemmal:

If g(t) is a continuous (n X n) —matrix-valued function on an interval, then
there exist solutions,

F: (a,b) - R™",to the differential equation F'(t) = g(t)F(t).

Applying this lemma, we have a function g(s) given by

g(s) = (K?S) _KO(S))

The equation T '(s) = k(s)N(s) becomesT '(s) = g(s)T(s).

Thus, the above lemma gives us the function T(s) for the curve o(s) with the
correct curvature. To find the curve a(s) we only need to integrate T(s). We can
choose a(c) to be any point in R? and we can choose u to be any unit vector in R? .
Changing u at o(c) involves a rotation. That rotation passes through the differential
equation so that another solution would appear as T“(s) = pgT(s), where pg is a
rotation matrix. A translation resets the point o (¢) to be any pointin R2. Thus, a second
solution a%(s) must satisfy a(s) = pgo(s) + w,.

This proves the theorem.
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