EVOLUTION OF MAGNETIC FIELD AROUND NEUTRON STARS

Authors

  • Zukhra Shamsimukhamadova Author

DOI:

https://doi.org/10.1808/p5861377

Keywords:

Evolution of magnetic field; magnetic field around neutron stars; Behavior and properties of evolution magnetic field; Collective motion driven by weak interactions in a matter; Movement of charged and neutral particles relative to each other; Hall drift;

Abstract

In this work, we delve into the key physical processes that govern magnetic fields and their evolution within neutron stars. Our investigation encompasses several crucial aspects: The fundamental properties of the matter constituting neutron stars. Understanding the extreme density, pressure, and composition of this matter is essential for accurately modeling the behavior of magnetic fields within them. Competing processes of the origin of powerful magnetic fields. We explore various hypotheses for how these fields may have formed during the birth of a neutron star or through subsequent processes. The limitations and mechanisms that influence the change of the magnetic field over time. This includes factors that may cause the field to weaken or strengthen over time, as well as potential instabilities that could play a role. A detailed analysis of the Hall drift. This specific phenomenon, where charged particles are separated due to a combination of their motion and the magnetic field, can significantly impact the evolution of the overall field.

References

Reisenegger, A. 2001a, in Magnetic Fields across the Hertzsprung-Russell Diagram, eds. G. Mathys, S. K. Solanki, & D. T. Wickramasinghe, ASP Conference Series, vol. 248, p. 469 (astro-ph/0103010)

Reisenegger, A. 2005, in Strong Magnetic Fields and Neutron Stars, eds. H. J. Mosquera Cuesta, H. Pérez Rojas, & C. Z. Vasconcellos, in press (astro-ph/0307133)

Fernández, R., & Reisenegger, A. 2005, ApJ, in press

Jones, P. B. 1999, PRL, 83, 3589

Reisenegger, A. 1995, ApJ, 442, 749

Jones, P. B. 2004, PRL, 93, 221101

Pethick, C. J. 1992, in Structure & Evolution of Neutron Stars, eds. D. Pines, R. Tamagaki, & S. Tsuruta (Redwood City: Addison-Wesley), 115

Goldreich, P., & Reisenegger, A. 1992, ApJ, 395, 250

Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars (New York: Wiley)

Baym, G., Pethick, C., & Pines, D. 1969, Nature, 224, 675

Yakovlev, D. G., & Pethick, C. J. 2004, ARA&A, 42, 169

Page, D., Lattimer, J. M., Prakash, M., & Steiner, A. W. 2004, ApJSS, 155, 623

Mendell, G. 1998, MNRAS, 296, 903

Ruderman, M. 2004, in The Electromagnetic Spectrum of Neutron Stars, NATO-ASI Proceedings, eds. A. Baykal, S. K. Yerli, M. Gilfanov, & S. Grebenev, in press (astro-ph/0410607)

Reisenegger, A. 2001b, ApJ, 550, 860

Reisenegger, A., & Goldreich, P. 1992, ApJ, 395, 240

Thompson, C., & Duncan, R. 1996, ApJ, 473, 322

Arras, P., Cumming, P., & Thompson, C. 2004, ApJ, 608, L49

Cumming, A., Arras, P., & Zweibel, E. 2004, ApJ, 609, 999

Hollerbach, R., & Rüdiger, G. 2004, MNRAS, 347, 1273

Rheinhardt, M., Konenkov, D., & Geppert, U. 2004, A&A, 420, 631

Biskamp, D., et al. 1999, Phys. Plasmas, 6, 751

Vainshtein, S. I., Chitre, S. M., & Olinto, A. V. 2000, Phys. Rev. E, 61, 4422

Araya, P. A. 2002, undergraduate thesis, P. Universidad Católica de Chile

Prieto, J. P. 2004, undergraduate thesis, P. Universidad Católica de Chile, and poster at this conference

Braithwaite, J., & Spruit, H. C. 2004, Nature, 431, 819

Downloads

Published

2024-06-08

How to Cite

Zukhra Shamsimukhamadova. (2024). EVOLUTION OF MAGNETIC FIELD AROUND NEUTRON STARS. INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 1(19), 139-153. https://doi.org/10.1808/p5861377